
CIS 771 --- Alloy Logic (part E)

CIS 771:
Software Specifications

Lecture: Alloy Logic
(part E)

Copyright 2007, John Hatcliff, and Robby. The syllabus and all lectures for this course are copyrighted materials and may
not be used in other course settings outside of Kansas State University in their current form or modified form without the
express written permission of one of the copyright holders. During this course, students are prohibited from selling notes
to or being paid for taking notes by any person or commercial firm without the express written permission of one of the
copyright holders.

CIS 771 --- Alloy Logic (part E)

Outline

  Declarations
  Set multiplicities
  Relational multiplicities
  Declaration constraints
  Nested multiplicities
  Cardinality constraints

CIS 771 --- Alloy Logic (part E)

A declaration introduces a name for a relation whose value is a subset
of the value of the bounding expression appearing after the “:”

Examples

Declarations

relation-name : expression

  address : Name -> Addr
  maps names to addresses (representing a single address book)

  addr: Book -> Name -> Addr
  maps books to names to addresses (representing a collection of address

books)

  address: Name -> (Name + Addr)

  maps names to names and addresses (representing a multilevel address
book)

Note: the bounding expression is usually
formed with unary relations and the arrow
operator, but any expression can be used.

CIS 771 --- Alloy Logic (part E)

A declaration introduces a name for a relation whose value is a subset
of the value of the bounding expression appearing after the “:”

Examples -- with more complicated expressions

Declarations

relation-name : expression

  address : (Alias + Group)->(Addr + Alias + Group)
  maps aliases and groups to addresses, aliases, and groups

  address : (Alias->Group) + (Group->(Addr + Alias + Group)
  has the same “type” as the declaration above

  aliases, groups in domain; addresses, aliases, groups in co-domain

  more precise than the version above because it constrains aliases to only
map to groups

  illustrates how declaration expressions can combine relations (e.g., via the
union operator) as well as sets

CIS 771 --- Alloy Logic (part E)

If the bounding expression of a declaration denotes a set (is unary), it
can be prefixed by a multiplicity keyword m which constrains the size of
set x according to m.

Multiplicity Keywords -- similar to those used for quantification

Set Multiplicities

x : m e

  set
  one
  lone
  some

any number
exactly one
zero or one
one or more

For set-value bounded expressions, omitting the multiplicity keyword is the
same as writing one.

Bounding expression with multiplicity m.

CIS 771 --- Alloy Logic (part E)

If the bounding expression of a declaration denotes a set (is unary), it
can be prefixed by a multiplicity keyword m which constrains the size of
set x according to m.

Set Multiplicities

x : m e

Examples

  RecentlyUsed: set Name
  says that RecentlyUsed is a subset of the set Name

  senderAddress: Addr
  says that senderAddress is a scaler in the set Addr

  senderName: lone Name
  says that senderName is an option: either a scaler in the set Name, or empty

  receiverAddresses: some Addr
  says that receiverAddresses is a non-empty subset of Addr.

CIS 771 --- Alloy Logic (part E)

Relational Multiplicities
Examples of relational multiplicities in UML…

Each class has one
associated professor

Each professor has
one or more
associated classes

Each magazine has 0
or more subscribers

Each person
subscribes to 0 or
more magazines

CIS 771 --- Alloy Logic (part E)

Relational Multiplicities
Examples of relational multiplicities in Entity-Relation models

2 from S
for t3

2 from S
for t1

Relational Multiplicities in Alloy

  A multiplicity m on the left (domain) tells you the size of the set
 associated with each range set element.

  A multiplicity n on the right (range) tells you the size of the set
 associated with each domain set element.

Multiplicities in Alloy can be placed on the elements of a relation declaration…

r : S m -> n T

s1
s2
s3
s4

t1
t2
t3
t4

Multiplicity: set S

s1
s2
s3
s4

t1
t2
t3
t4

Multiplicity: one T

0 from S
for t2

0 from S
for t4

1 from T
for s1

1 from T
for s2

1 from T
for s3

1 from T
for s4

CIS 771 --- Alloy Logic (part E)

CIS 771 --- Alloy Logic (part E)

Functions and Injections
Examples

S1

S0

S2

T1

T0

T2
functional,
but not injective

S -> one T

S1

S0

S2

T1

T0

T2
injective,
but not functional

S one -> T

  A binary relation that maps each atom to at most one other atom is said to
be functional, and is called a function.

  A binary relation that maps at most one atom to each atom is injective.

S1

S0

S2

T1

T0

T2
functional,
and injective

S one -> one T

S1

S0

S2

T1

T0

T2
neither functional,
nor injective

S -> T

Note: due to the “at most one” in the definitions below, it would be valid to
replace the instances of one above with lone

Common Relations via Multiplicities

  r: A -> one B
  A (total) function with domain A, range B

  r: A one -> B
  An injective relation

  r: A -> lone B
  A (partial) function

  r: A one -> one B
  An injective (total) function

  r: A some -> some B
  A surjective relation

CIS 771 --- Alloy Logic (part E)

Examples

CIS 771 --- Alloy Logic (part E)

For You To Do
  For each of the relations, give the most precise declaration with multiplicities.

S1

S0

S2

T1

T0

T2

S1

S0

S2

T1

T0

T2

S1

S0

S2

T1

T0

T2

S1

S0

S2

T1

T0

T2

(A) (B) (C) (D)

S3 T3 S3 T3 S3 T3 S3 T3

  For each of the declarations below, draw two relations with the same domain /
 range as the relations above such that the first relation satisfies the multiplicities in
 the declaration while the second one violates it.
  r: S some -> lone T
  r: S set -> one T
  r: S lone -> lone T
  r: S some -> some T

CIS 771 --- Alloy Logic (part E)

Multiplicities are a Shorthand
Multiplicities are just a shorthand, and can be replaced by
standard constraints…

r : A m -> n B

all a: A | n a.r
all b: B | m r.b

can be written as…

Example

members: Group lone -> some Addr

all g: Group | some g.members
all a: Addr | lone members.a

can be written as…

CIS 771 --- Alloy Logic (part E)

Generalizing to Tuples
In the schema below, A and B can be arbitrary
expression, and don’t have to be relation names.

r : A m -> n B

…in such a case, this says that r maps m tuples in A to each tuple in B,
and maps each tuple in A to n tuples in B.

Example

addr: (Book -> Name) -> lone Addr
…says that that relation addr associates at most one address with each
address book / name pair.

{(B0, N0, A1)
 (B0, N1, A2)
 (B1, N0, A3)}

{(B0, N0, A1)
 (B0, N0, A2)
 (B1, N0, A3)}

CIS 771 --- Alloy Logic (part E)

Declaration Constraints
Declaration syntax can also be used to impose constraints on
relations that have already be declared, or on arbitrary expressions…

Original declaration…

address: (Group + Alias) -> Addr

…imposing additional constraints somewhere later in the model…

(Alias <: address): Alias -> lone Addr

…says that each alias maps to at most one address

Declaration constraints, like any other formula, can be combined with
logical operators, placed inside the body of quantifications, etc.

all b: Book | b.addr: Name lone -> Addr

…says that each address book is injective (maps at most one name to
an address)

CIS 771 --- Alloy Logic (part E)

Nested Multiplicities
Multiplicities can be nested

A declaration of the form…
r: A -> (B m -> n C)

…means that for each tuple in A, the corresponding tuples in B -> C
form a relation with the given multiplicity. In the case that A is a set,
the multiplicity constraint is equivalent to…

all a: A | a.r : B m -> n C

Example
addr: Book -> (Name lone -> Addr)

…says that, for any book, each address is associated with at most one name,
and is equivalent to…
all b: Book | b.addr: Name lone -> Addr

addr: (Book -> Name)lone -> Addr
…whereas…

…says that each address is associated with at most book/name combination. The first
(but not the second) allows an address to appear in more than one book

CIS 771 --- Alloy Logic (part E)

For You To Do

  For each of the relation declarations below, give two relation
 instances such that the first relation satisfies the declaration while
 the second relation violates the declaration…

  addr: (Book -> Name) -> some Addr
  addr: lone Book -> (Name -> Addr)
  addr: one Book -> (one Name -> some Addr)

  For each of the relation declarations above, write a declaration that
 does not include multiplicities but instead is accompanied by
 explicit constraint that achieve the same effect as the declarations
 above

  Given the declaration below, write a declaration constraint that
 enforces the additional property that each group maps to one or
 more addresses

  address: (Group + Alias) -> Addr

CIS 771 --- Alloy Logic (part E)

Cardinality Constraints
The operator # applied to a relation gives the number of tuples it
contains, as an integer value.

Address: (Group + Alias) -> Addr
 …
all g: Group | #g.address > 1

…says that every group has more than one address associated with it

addr: Book -> Name -> Addr
 …
all a: Addr | #addr.a <= 5

…says that the number of book/name pairs associated with each
address is less than or equal to 5

CIS 771 --- Alloy Logic (part E)

Sum Expression
The expression below denotes the integer obtained by summing the
values of the integer expression ie for all values of the scalar drawn
from the set e.

sum x: e | ie

Example

addr: Book -> Name -> Addr

sum b : { b:Book | #b.addr > 5 } | #b.addr!

…gives the total number of entries across all books that have great than five entries

CIS 771 --- Alloy Logic (part E)

Acknowledgements

  The material in this lecture is based on Sections 3.6 and 3.7 from…
  Software Abstractions: Logic, Language, and Analysis, Daniel Jackson,

MIT Press, 2006.

