
CIS 771: Software Specifications
Introduction to JML

Java Modeling Language (JML)

• A behavioral interface specification
language for Java

• supporting design-by-contract (DBC)

• ... invented by Gary T. Leavens in the 90s

• the de facto Java specification language in
formal methods research community

• over 100 research papers and 30 groups

Alloy, OCL, and JML
• JML features invariants, pre/postconditions, etc.

• a code-level specification language

• ... less abstract than Alloy and OCL

• based on Java

• ... more familiar to software developer

• ... do not need to learn a completely
different formalism

• supported by various tools/techniques

• e.g., runtime checkers, static analyzers

Overview of JML Features

• Type specifications: invariants, etc.

• Method specifications: pre/postconditions,
frame conditions, etc.

• Specification expressions: Java expressions
+ JML-specific constructs

• ... we’ll focus on lightweight specifications

• Note: throughout the lecture, we’ll refer to
sections of the JML Reference Manual using
the following form: (§ section number)

JML Specifications
• ... are written inside Java comments

immediately before Java program elements

• newline comments of the form: //@ ...

• block comments: /*@ ... @*/

• multi-line block comments:
/*@ ...

 @ ...
 @*/

• note: no space between /* (or //) and @

Type Specifications (§8)
• User-defined types in Java are classes and

interfaces

• JML supports specification of types

• the above is instance invariant constraining
object field values

public class Container {

 //@ invariant this.data != null;
 Object data;

 ...

}

Invariants (§8.2)
• Invariants can be instance (default) or static

• static inv. constrains class static fields

• instance inv. constrains object fields

• ... we’ll focus only on instance invariants

• Instance invariants should be

• established by non-helper constructors

• preserved by non-helper instance methods

• /*@ helper @*/ marks helper methods

Method Specifications (§9)

• ... we’ll only consider lightweight
specification cases (§9.4)

• Method (or constructor) clauses

• preconditions: requires clauses (§9.9.2)

• postconditions: ensures clauses (§9.9.3)

• frame conditions: assignable clauses

(§9.9.9)

• etc.

requires Clause (§9.9.2)

• requires clause specifies method

preconditions

public class Container {

 //@ invariant this.data != null;
 Object data;

 //@ requires data != null;

 public Container(Object data) {
 this.data = data;

 }
 ...

}

ensures Clause (§9.9.3)

• ensures clause specifies method

postconditions

• \result is a JML expression for denoting a

method’s return value (§11.4.1)

public class Container {
 ...

 //@ ensures \result == this.data;
 public Object getData() {
 return this.data;
 }
 ...
}

ensures Clause (§9.9.3)

• postconditions may refer to “old” values
(i.e., values at the method entry point)

• \old() is a JML-specific expression for

retrieving old values (§11.4.2)

 /*@ requires other != null;

 @ ensures this.data == \old(other.data)

 @ && other.data == \old(this.data);

 @*/

 public void swap(Container other) {

 Object temp = this.data;

 this.data = other.data;

 other.data = temp;

 }

assignable Clause (§9.9.9)

• assignable clause specifies the frame

condition of a method

• specifying what may be changed

• ... in lightweight specification, its unspecified

 /*@ requires other != null;

 @ assignable this.data, other.data;

 @ ensures this.data == \old(other.data)

 @ && other.data == \old(this.data);

 @*/

 public void swap(Container other) {

 Object temp = this.data;

 this.data = other.data;

 other.data = temp;

 }

Variable Nullity (§6.2.12)
• Variable nullity is a source of problem in many Java

programs

• ... causes NullPointerException

• By default, JML assumes all variables have non-null
values (as invariants)

• /*@ nullable @*/ can be used at variable
declarations to indicate otherwise, e.g.,
public void swap(/*@ nullable @*/ Container other)...

• i.e., /*@ non_null @*/ is the default

• good practice: always explicitly specify one way or
the other for documentation purposes

For You To Do
• Revise the Container example to use JML

nullable or non_null modifiers on
appropriate variable declarations

• ... can all non-null-ness variable
preconditions safely be replaced to use
the non_null modifier?

• Think about the possible input states of the
Container.swap() method

• ... is there a subtle input state that you do
not expect but its contract still holds?

JML Tools
• Many research tools have been developed

for JML

• documentation, e.g., JMLDoc

• runtime checking, e.g., JML RAC

• static analyzer, e.g., ESC/Java, Kiasan

• model checking, e.g., Bandera/Bogor

• theorem proving, e.g., JACK, LOOP

• ... in this course, we will use Kiasan

Why use JML?
• Java only supports assertion statement

• ... not until Java 1.4

• JML offers syntactic sugars for embedding
assertions at various program points

• requires: assertions at method entry points

• ensures: assertions at (normal) method exit
points

• invariant: assertions at method entry and
exit points

Why use JML?
• Software developers usually write design intentions/

contracts informally in Java documentation comments

• parameter x is not null

• object field y must not be negative

• etc.

• ... it cannot be leveraged for checking the programs

• outdated “contract” are undetected

• clients may not read documentation

• contracts in a natural language are often ambiguous

• JML provides a way to have checkable documentation

Why not just use assert?

• Often times, the same conditions should be
checked at multiple program points

• thus, it is tedious to just use Java’s assert

statement

• ... we might miss placing assertions at
some places (Murphy’s law)

• Developers usually do not write assertions
in code

• ... assertions are mostly used for testing

Why not just use assert?

• Assertions “polute” codebase

• What about error handling?

• Java offers feature to disable assertions

• implemented as a conditional

• but they are still in the compiled code

 if (!$assertionDisabled) {
 // check assertion
 ...
 }

Error Handling

• Tools can be developed to for JML to handle
assertion errors

• during testing or analysis, test reports can be
generated

• during deployment, error feedback can be
accumulated in a remote database

• ask users whether to send feedback

• ... Separation of Concerns (SoC)

Looking ahead...

• In the future, you will be asked to write
contracts

• Companies such as Microsoft are already
moving in such direction

• Spec# programming system
http://research.microsoft.com/projects/specsharp/

• Code Contract: DBC for .NET
http://research.microsoft.com/projects/contracts/

